Follow the Drop

Activity Overview

Students observe and collect information about water runoff on their school property.

Objectives

Students will:

- Practice observation and investigative skills
- Survey and collect information about their school site
- Learn about the nature of water in the landscape
- Calculate the volume of rain water falling and forming runoff on their school grounds
- Use critical thinking skills to develop ideas for storm water management on their school yard

Subjects Covered

Science, Math

Grades

4 through 12

Activity Time

2 hours: 1 hour on the school grounds, 1 hour in the classroom

Season

Any, preferably spring or fall

Materials

Clipboards, pencils (or colored pencils),
"Follow the Drop" handout, map of schoolyard showing property lines and building locations (and/or graph paper), average annual rainfall data obtained from the weather bureau, local newspapers or TV weather newscaster, etc.

Please see appendices for

Common Core State Standards
Next Generation Science Standards
Equitable Opportunities for
English Language Learners

Background

The purpose of this activity is to give students the tools they need to practice watershed citizenship by developing water friendly stormwater management plans for their schoolyard.

Everyone is a citizen of a watershed. Everyone has a watershed address. And everyone can practice good water citizenship at home, in the neighborhood, and in the schoolyard.

A watershed is the land area surrounding and draining into a specific body of water (stream, river, pond, lake). Water must flow downhill; bodies of water always lie in a low place in the land.

Before development, rain soaked into the land where it fell, because soil is permeable (absorbent). With development, more and more land was covered by structures and surfaces designed to shed water, not absorb it. These impermeable surfaces (such as roofs, sidewalks, driveways, roads and parking lots) create substantial areas that can shed substantial amounts of water. This water is called runoff or stormwater. In urban areas today, stormwater is considered the equivalent of trash: something to get rid of as fast as possible, instead of the precious resource it really is.

Water moving over the landscape in a large city, a medium-sized subdivision or single school yard after a rain will flow basically the same. Only the scales are different: a larger volume of water moves across the landscape in a large city compared to a small schoolyard. Nevertheless, in either case, water may flow in a sheet-like way, collect in channels, drain into pipes, accumulate in puddles, or soak into the ground during a rain storm. Rain water will eventually drain to a river, a lake or to groundwater. To have clean water in a life sustaining, healthy watershed, each site - whether large or small - requires thoughtful stormwater management. One of the best ways to ensure clean water is to control runoff near its source where precipitation first comes in contact with the land. Keeping water out of storm sewer systems lessens erosion and sediment carried into lakes and rivers, reduces pollutants carried by moving water, and decreases chances of flooding. See EP resource Storm Water 101 for more information.

Pre-Activity Preparation

- Make a copy of an existing school map showing the location of buildings, driveways, and property lines. Locate north, and indicate a scale on the map.
- If desired, divide the map into sections. Assign a section to each student team. The team will locate and record all features described below that are inside their section. Each section can be reassembled to form a composite map.
- Another option is to give each team a complete map and assign the team only one feature to locate such as downspouts on school buildings.
- Obtain the average rainfall data from the weather bureau, local newspapers, etc. This data is used for calculating runoff on school grounds.

Activity Description

This activity involves three steps. First, you will survey the school grounds, identify how water moves over the land, and mark this information on a map. Second, you will measure designated areas, and calculate the amount of runoff produced from those areas. Third, you will begin to identify locations for infiltrating water on the school grounds. These three steps are described below in more detail.

Step 1: Identify Water Patterns

Form teams and go outside to identify the patterns of water movement. Locate the following features on your maps.

- Locate high and low points.
- Locate impervious (hard) surfaces such as parking lots and sidewalks, where water runs off.
- Locate porous (pervious/absorbent) surfaces such as garden beds or grassy areas where water may soak in or infiltrate the ground.
- Identify patterns in water movement such as where water might flow sheet-like, in gullies, or channels. Draw arrows to show direction of water movement.
- Locate places where water puddles. Hint: areas that puddle may have different plants than the surrounding area; the soil is often wet or it may become hard and cracked when dry.
- Locate downspouts on the school building or where water falls off roofs.
- Locate storm drains on school property.
- Locate where water enters the school grounds from hillsides, streets or other locations.
- Identify spots where water exits the school ground such as through ditches or off school parking lots.
- Identify where water spills from one surface to another such as where water is moving from a hard, impervious surface like a sidewalk to a pervious, vegetated area or vice versa.

Step 2: Measure Areas for Rain and Runoff Calculations

Select an area and measure its size -- then calculate the amount of runoff it generates. Possible areas to measure include the school roof, parking lots, and playing fields or play areas. You may also consider measuring pervious areas compared to impervious areas. If your base map is drawn to scale, these measurements may be made in the classroom using rulers or a grid system. Use measuring tapes or paces to make on-the-ground measurements outdoors.

Calculations:

1. Calculate the area of your selected site (roof, parking lot, play area, etc.) by multiplying length by width to obtain a square foot measurement.

Example: Calculate Area 30 feet $\times 50$ feet $=1,500$ square feet area
2. Multiply the area by the average annual rainfall to determine the volume of rainfall falling on your site. In this example, the average annual rainfall is 30 inches per year.
a) First, convert average annual rainfall data from inches to feet.

Example: Convert annual rainfall from inches to feet $30 \mathrm{in} . \div 12$ in. $=2.5$ feet
b) Next, multiply average annual rainfall data by area to get the volume of rainfall falling on your site.

Example: Determine volume of rainfall $2.5 \mathrm{ft} . \times 1,500 \mathrm{sq} . \mathrm{ft} .=3750 \mathrm{cu}$.

Follow the Drop (cont.)

3. Calculate how much of the rain becomes surface runoff. The amount of surface runoff depends upon the surface type. The harder the surface - the more runoff generated. See the following examples:

If rain is falling on hard surfaces such as a parking lot, 100\% becomes runoff.
Example: Calculate surface runoff from a parking lot $3750 \mathrm{cu} . \mathrm{ft} . \times 1=3750 \mathrm{cu}$. ft.

If rain is falling on a lawn, approximately 60% becomes runoff. (Runoff from lawns can be a variable, depending upon soil type, condition of the lawn, and topography.)

Example: Calculate surface runoff from a lawn $3750 \mathrm{cu} . \mathrm{ft}$ x . $60=2250 \mathrm{cu}$. ft.

If water runs into a rain garden, which collects and infiltrates rain water, 0% becomes runoff.
Example: Calculate surface runoff from a rain garden 3750 cu . ft.. x. $00=0 \mathrm{cu}$.
4. To help students understand these large volume numbers, have them convert cubic feet to gallons. 1 cubic foot of runoff produces 7.2827 gallons of water.

Example: Convert cubic feet to gallons 3750 cu.. ft.. $\times 7.2827$ gallons $=27,410.125$ gallons

Step 3: Discuss Observations, Results, and Possibilities.

As a class, share your findings based on observations and data generated. Discuss the big picture of water movement by identifying characteristics observed, possible problem areas, etc. Talk about ways the school can reduce runoff on school grounds. Identify likely areas to create rain gardens to collect and infiltrate water.

Extensions

- Go outside when it is raining, and observe storm water runoff in action. (See Rainy-Day Hike activity in Project Wet: Curriculum and Activity Guide. Bozeman, MT: The Watercourse and Council for Environmental Education. Pages 186 - 190.)
- Observe what the rain water runoff is picking up along its route - sediment, trash, oil, gas, etc.
- Calculate, using the activity formulas, the amount of water falling on the school grounds after a single rain event. Use a rain gauge to obtain rainfall quantity.
- Calculate the number of showers that can be taken with the rainwater runoff. A five-minute shower uses 25 gallons of water, and one cubic foot of runoff produces 7.2827 gallons of water.

Example: Convert cubic feet to gallons 3750 cu..ft.. $\times 7.2827$ gallons $=27,410.125$ gallons

- Calculate possible number of showers 27410.125 gallons $\div 25$ gallons $=1093$ showers

Additional Resources

- Cochrane, Jennifer. (1987). Water ecology. New York: The Bookwright Press.
- Higgins, S., Kesselheim, A., Robinson, G. (1995). Project wet: Curriculum and activity guide. Bozeman, MT: The Watercourse and Council for Environmental Education.
- Hooper, Meredith. (1998). The drop in my drink. New York: Penguin Putnam Inc.
- Leopold, Aldo. (1966). A sand county almanac. UK: Oxford University Press.
- Leopold, Luna B. (1974). Water: A primer. San Francisco, CA: W.H. Freeman \& Co.

Follow the Drop (cont.)

- Nadeau, Isaac. (2003). The water cycle: Water in plants and animals. New York: Rosen Publishing Group, Inc.
- Nadeau, Isaac. (2003). The water cycle: Water in the atmosphere. New York: Rosen Publishing Group, Inc.
- Project Wild. (1999). Where does water runoff after school? Project WILD. Bethesda, MD: Western Regional Environmental Education Council.

Assessments

- Describe the topography of your schoolyard and how it affects the flow of water during a heavy rainfall.
- Tell a story about a rain drop falling on the school ground. Describe its journey as it moves on the school property. (See "Odyssey" in Aldo Leopold's A Sand County Almanac)
- List positive water-friendly landscape features and things that could change on the school ground to prevent runoff from leaving the schoolyard.
- Give an oral report on your findings along with follow-up suggestions for increasing infiltration and reducing surface runoff.

Follow the Drop: Calculation Sheet

Name(s) \qquad Date: \qquad

How much of the rain that falls on a school stays on the property? How much infiltrates into the ground? How much exits the site as runoff? As part of this investigation you will determine the answers to these questions. To do so, fill in the tables below in order.

First, explain the following key concepts in your own words, then complete steps 1 through 4:

- Precipitation
- Infiltration
- Runoff
- Permeable
- Impermeable
- Cubic feet
- Gallon

1. Calculate areas: Use the grid to determine the area covered in each of these types of cover.

Cover Type	Width (feet)	\mathbf{x}	Length (feet)	$=$	Total Area (square feet)
Roof (downspouts)		x		$=$	
Parking lot		x		$=$	
Lawn		x		$=$	
Native planting		x		$=$	
Rain garden		x		$=$	
Other	x		$=$		

2. Convert average yearly precipitation or rainfall from inches to feet.

Annual rainfall: \qquad inches per year

Rainfall in inches \qquad $\div 12$ inches $=$ \qquad feet
3. Determine the amount of rain that falls on each cover type every year.

Cover Type	Area from \#1 (square feet)	\mathbf{x}	Annual Rainfall (\#2) (feet)	$=$Total Rainfall per area (cubic feet)	
Roof (downspouts)		x		$=$	
Parking lot		x		$=$	
Lawn		x		$=$	
Native planting		x		$=$	
Rain garden		x		$=$	
Edible garden		x		$=$	

Follow the Drop: Calculation Sheet

4. How much of the rain is runoff? Use the runoff calculator for each cover type.

Cover Type	Total Rainfall (\#3) (cubic feet)	x	\% Runoff Calculator	$=$	Surface Runoff (cubic feet)
Roof (downspouts)		x	1	$=$	
Parking lot		x	1	$=$	
Lawn		x	. 6	$=$	
Native planting		x	. 4	$=$	
Rain garden		x	0	$=$	
Other		x	. 4	$=$	
Total runoff	-----------------	---	---------------		

Information:

1. One cubic foot $=7.48$ gallons
2. On average, an American uses 100 gallons of water per day.
3. On average, Americans as a whole use 400,000,000,000 gallons of water per day.
4. A family of four typically uses 100,000 gallons of water per year.
5. An average American uses 15 to 25 gallons of water per shower.

How many gallons of water from a nearby parking lot or roof could a rain garden save from running off into storm sewers?

Earth Partnership Rain Garden Curriculum Sampler

A Publication of
Earth Partnership
University of Wisconsin-Madison Arboretum
1207 Seminole Highway
Madison, WI 53711
www.arboretum.wisc.edu

Lead Authors

Cheryl Bauer-Armstrong and Libby McCann

Contributors
Greg Armstrong, Claire Shaller Bjork, Chuck Bomar, Pat Brown, Amy Callies, Carol Edgerton, Rick Hall, Susan Kilmer, Sara Krauskopf, Stephen Laubach, Emily Miller, Maria Moreno, Caitlin O’Connell, Benjamin Orcutt, Robert Schlaeffer, David Schultz

Development of the Earth Partnership curriculum was made possible by:

Ira and Ineva Reilly Baldwin Wisconsin Idea Endowment
Patrick and Anna M. Cudahy Foundation
Friends of the Arboretum
Howard Hughes Medical Institute
Institute of Museum and Library Service
Institute for Biology Education
Morgridge Center for Public Service

National Science Foundation Wisconsin Coastal Management Program Wisconsin Environmental Education Board Wisconsin ESEA Improving Teacher Quality Program Wisconsin Sea Grant
U.S. Environmental Protection Agency
U.S. EPA Great Lakes Restoration Initiative

Copyright Information

The intellectual property in the Earth Partnership curriculum is held by the University of Wisconsin Board of Regents, Earth Partnership, and the UWMadison Arboretum. These materials are intended for distribution only as part of an Earth Partnership institute, workshop, in-service or other teacher professional development program. Written permission must be obtained to use, reproduce, distribute or modify the materials in this guide.

For more information on Earth Partnership Professional Development and RESTORE Institutes or reproduction of materials contact Earth Partnership at the UW-Madison Arboretum.

